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Abstract

We describe a system for acquiring re�ectance �elds
of objects without moving parts and without a massively
parallel hardware setup. Our system consists of a set of
planar mirrors which serve to multiply a single camera and
a single projector into a multitude of virtual counterparts.
Using this arrangement, we can acquire re�ectance �elds
with an average angular sampling rate of about120+
view/light pairs per surface point. The mirror system allows
for freely programmable illumination with full directional
coverage. We employ this setup to realize a 3D acquisition
system that employs structured illumination to capture the
unknown object geometry, in addition to dense re�ectance
sampling. On the software side, we combine state-of-the-art
3D reconstruction algorithms with a re�ectance sharing
technique based on non-negative matrix factorization
in order to reconstruct a joint model of geometry and
re�ectance. We demonstrate for a number of test scenes
that the kaleidoscopic approach can acquire complex
re�ectance properties faithfully. The main limitation is
that the multiplexing approach limits the attainable spatial
resolution, trading it off for improved directional coverage.

1. Introduction

The re�ectance �eld as introduced by Debevec et al. [2]
is an eight-dimensional function describing the response of
a scene to incident illumination. It encompasses all poten-
tial views of an object, its light �eld [10], under arbitrary
incident illumination, the incident light �eld [12]. So far,
only subsets of the re�ectance �eld have been acquired,
usually for a static view point [2, 12, 3] or static illumi-
nation [10]. Capturing that encompasses both, view and
illumination variation, is currently restricted to a narrow
set of viewpoints and lighting positions [4]. If the object
geometry and/or a model of the re�ectance behavior of
the surface are known, the dimensionality of the sampling
problem reduces considerably [9]. Lensch et al. [9] selected
a multi-lobe Lafortune [7] model as their re�ectance model.
Later work, referred to asre�ectance sharing, mitigated the
manual selection of a parametric BRDF model [20, 18].

Recent work has demonstrated the capability of es-
timating the object geometry in conjunction with its
spatially varying BRDF [6, 15]. Holroyd et al. [6] use an
optical setup that exploits Helmholtz reciprocity [19] while

mechanically repositioning the apparatus around the object
to cover the required view and illumination directions.
Schwartz et al. [15], on the other hand, employ a massively
hardware parallel setup consisting of151 point-and-shoot
cameras arranged in a hemispherical dome to sample the
re�ectance �eld densely.

In this paper, we investigate an alternative method for
dense re�ectance sampling. Our goal is to avoid the cost
and complexity of parallel hardware setups, as well as the
limitations of mechanically moving cameras and/or light
sources. We therefore propose a multiplexing approach that
folds full spherical acquisition and lighting into a single,
�xed-device setup: We explore the use of kaleidoscopic
mirror systems to densely sample the re�ectance of an
object while simultaneously acquiring data for surface
reconstruction.

Mirror systems have previously been employed for
generating virtual camera-projector systems. Closest to our
work are the apparatus employed by Garg et al. [4], and
Han and Perlin's work on BTF measurements by use of
kaleidoscopes [5]. Garg et al. sample a spatially restricted
portion of the re�ectance �eld using two sets of coaxial
camera-projector pairs multiplied by a set of16 mirrors
to generate32 virtual projectors and cameras. Their setup
avoids the complexity of mirror inter-re�ection and they
do not estimate the object geometry. Han and Perlin, on
the other hand, exploit inter-re�ections to generate a large
number of virtual illumination and viewing directions using
a single projector-camera pair. Their work is restricted to
sample the re�ectance of planar samples. Another setup
exploiting mirrors for achieving virtual view distributions
for surround structured light scanning is presented by
Lanman et al. [8]. They use a two-mirror setup and a
carefully placed orthographic projection unit to avoid the
super-positioning of active light projection patterns. This
allows for the estimation of object geometry. The authors,
however, do not sample re�ectance.

We propose a system that can identify the virtual view
and projection directions in the camera and projector im-
ages, respectively. This enables the use of structured light
scanning within arbitrary camera-projector-mirror systems.
In our experiments, we achieve approximately250 � 150
virtual camera-projector pairs, a number comparable to a
dedicated hardware setup [15]. The virtual cameras and
projectors cover most of a full sphere surrounding the
object. The inherent directional multiplexing, however,
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Figure 1. Illustration of imaging and projection inside a mirror system.

results in a rather low spatial resolution both for projection
and for imaging. Calibration efforts as compared to a hard-
ware parallel system are similarly complex but on different
levels: As an example, radiometric calibration needs to
estimate the parameters of the mirror system instead of
individual response curves for each hardware device. A
similar argument holds for the geometric calibration.

2. Operation Principle

Our system is build around imaging and projection
within systems of planar mirrors. It exploits the multitude
of re�ections and inter-re�ections to compress a full
surround �eld of view into the aperture of a single camera
and/or projector. The basis for our design is the recent anal-
ysis of planar mirror systems by Reshetouski et al. [14].
Due to Helmholtz reciprocity, their analysis applies to
cameras as well as projectors with one difference: If we
want to avoid computational recovery of raw re�ectance
data, as e.g. in [16], we have to avoid the superposition of
light due to different mirror re�ections of the light source.

2.1. Point Scanning in Planar Mirror Systems

Consider a two-dimensional mirror system as shown in
Fig.1. On the left, we illustrate how a projector is illuminat-
ing a single point on the surface of an object. By unfolding
of the system [14], i.e. by mirroring the world instead of
the ray, we can visualize the mirror world with a number
of virtual objects. The illuminated point can be considered
to be present on all copies of the object. The camera can
then observe those illuminated points that are not occluded.
The four points visible to the camera are e.g. generated by
the re�ection sequences (from left to right)f 1; 2; 1g, f 1g,
fg , andf 2; 1g. These numbers indicate the mirrors that are
being traversed by the ray before it hits the object.

Alternatively, we can consider the system as consisting
of virtual cameras and projectors observing the real object
as shown in the middle of Fig.1. In our example, the virtual
cameras observe the illuminated point via the re�ection
sequences (from left to right)f 1; 2; 1g, f 2; 1g, f 1g, and
fg . As expected, these sequences are the same as in the
previous case. This alternative interpretation immediately
shows that a pair of re�ectance values is sampled simul-
taneously: For one projector illumination direction, we
obtain re�ectance samples from four viewing directions.
Furthermore, since multiple viewing rays are available
that observe the same object point, we can triangulate
the point and obtain part of the object geometry. Finally,
the same object point can be illuminated by different

virtual projectors, one at a time. This results inNk � M k
re�ectance samples per object pointx k , where Nk is
the number of unoccluded views andM k the number of
unoccluded illumination directions. In our example, this
yields20 re�ectance samples for the illuminated point.

Of course, point sampling an object is inef�cient. It
would require the acquisition ofO(K � M ) images for
samplingK surface points, andM = max k M k . Key to our
method is the use of structured light in the present context.
The main challenge is that we have to avoid illuminating
a surface point from more than one direction in a single
image of the scan since this would lead to the superposition
of light and thus to integral re�ectance samples.

2.2. Structured Light in Planar Mirror Systems

As shown by Reshetouski et al. [14], a camera image of
a planar mirror system can be decomposed into a number of
sets of image coordinates for which a certain virtual camera
view is valid, Fig.1 (right). We call these image regions
camera chambers, or short,Cc. A virtual camera in a
virtual multi-view system is then given by this set of image
coordinates in conjunction with the calibration parameters
that de�ne the projection operation� c : R3 7! R2 of the
virtual cameraV n

c := f Cn
c ; � cg. Applying the Helmholtz

reciprocity principle, we describe virtual projectors, similar
to virtual cameras, as a set of coordinates of the original
projector (not shown). A virtual projector is given by a
projector chamberCp, i.e. a set of projector coordinates for
which the virtual projector is valid, in conjunction with its
calibration parameters that de�ne the projection operation
� p : R3 7! R2 for the virtual projectorV m

p := f Cm
p ; � pg.

By illuminating only a single projector chamber at a
time, we are able to decompose re�ectance acquisition into
non-overlapping regions of illumination.

The camera and projector chambers enable the decom-
position of imagery, obtained from projecting light into a
planar mirror system, into different light/direction pairs.
Each combination of camera and projector chambers gives
rise to a unique viewing/lighting direction pair. We are
thus able to sample the re�ectance �eld of an object using
N � M (sub-)images. In practice, we achieve an average
of about120 unoccluded view/light directions per surface
point. Without exact surface geometry which serves as
an interpolation guide, parallax effects, both for view and
lighting interpolation become apparent. We therefore opt
for structured light projection which enables geometry
reconstruction on top of re�ectance sampling.

Before we describe the actual implementation of our
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Figure 2. Images of our acquisition system:Left: the laser/camera
system, the orange line indicates a laser ray that can be steered
inside the mirror system.Middle: an outside view of our system
with dimensions.Right: the back mirror is attached to the back
entrance of the system once an object is mounted inside.

Figure 3.Left: Image of an object inside our acquisition system.
The inset shows that both, views from the top and views from
below are generated by our system. Side views from different
directions and at different elevations are visible towards the
boundary of the image.Right: Virtual camera distribution in our
setup. The red box is the bounding box of the object, blue cones
are virtual cameras in the upper hemisphere, cyan ones are located
in the lower hemisphere. The camera marked in green is the real
camera location. Units are given in mm.

system, we �rst discuss the hardware design that was used
for our experiments.

3. Hardware Design

Our hardware setup consists of four planar mirrors, one
digital SLR camera, and one RGB laser projector with
a double axis mirror galvanometer for control. Next we
discuss our design choices regarding these components.

Mirror System: We employ a kaleidoscopic mirror
system consisting of four mirrors, three of which are
arranged in the classical con�guration of a truncated three-
sided pyramid [5]. This type of system can only generate
hemispherical view distributions which is suf�cient to
perform exhaustive re�ectance sampling if the sample is
�at. However, non-�at geometry requires sampling of the
full sphere of viewpoints in order to obtain dense coverage
of both, surface geometry and re�ectance. To enable
spherical sampling, we add one additional mirror at the
back entrance of the system which generates re�ections
that also show the object from below, see Fig.3. The three
main mirrors are optical quality �rst surface foil mirrors
stretched on an aluminum frame. The mirror on the back
side is a glass mirror with a hole cut by a water jet. This
hole enables an object holder assembly to protrude inside
the system. Images of our system are shown in Fig.2.

Projector: For our projector we use a system of coaxial
red, green, and blue lasers with approximately5mW output
power per channel. The choice of using a laser system
is motivated by the much larger depth-of-�eld of a laser
beam as compared to a standard digital projector: Since
our system folds the rays into the mirror system, distances
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Figure 4. Overview of our reconstruction pipeline. The individual
steps are covered in detail in Sect.5.

between the apparent closest object (no re�ection) and the
farthest virtual objects are quite signi�cant (about4m).
Since we need to be able to control the scan in both, x-
and y-directions we are using a two-mirror galvanometer
scanner. In order to ensure uniform illumination within
one scan line, we use a constant angular scan speed of the
projector in one axis. Careful adjustment of the system
geometry allows for planar sheets to be scanned in this
(horizontal) coordinate [11]. Re�ectance data is inherently
HDR. Exposure bracketing cannot be used to perform HDR
imaging in case of laser scanning since the illumination
is non-stationary. We therefore choose to generate the
different exposures by scanning the same scan line multiple
times. We take four exposures spaced by a factor of4
between consecutive pairs of images. To cover the large
�eld of view inside the mirror system, we employ a wide
angle two-axis mirror galvanometer (Thorlabs GVS012)
with an opening angle of 80 degrees in both dimensions.
The projector is mounted close to the entrance of the
mirror system to make full use of the aperture of the mirror
system, i.e. no rays miss the opening at the front side.

Camera: We employ a Canon 5D mark II DSLR
equipped with a Canon EF14mm f/2:8 L II USM lens. This
lens has a large �eld of view and comparatively minor radial
distortion and chromatic aberrations. As a compromise be-
tween light ef�ciency and depth-of-�eld, we use an aperture
setting off=14. The camera is mounted such that it is close
to the entrance of the mirror system while simultaneously
avoiding to image parts of the laser projector.

4. System Overview

Here we present the processing pipeline, it will be
detailed in Sect.5, see also Fig.4.

In practice, we are performing laser stripe scanning.
Putting aside the complexities of the mirror system, we
can see the system as one consisting of multiple cameras
(typically on the order of 200), and multiple laser pro-
jectors (about 100), for details see Table3. The cameras
operate in parallel while the laser projectors project their
stripes in sequence. A plot of the view point distribution
is shown in Fig.3. In order to interpret our system as
a multi-camera/multi-projector system, we �rst have to
compute the camera chambersCn

c ; n = 1 ::N and projector
chambersCm

p ; m = 1 ::M , Sect.5.2, which, in turn is based
on the geometric calibration of our system, Sect.5.1. For



proper re�ectance sampling, it is also necessary to perform
a radiometric calibration of the camera and the mirrors.

Once the virtual projectorsV m
p ; m = 1 ::M are known,

we determine a sequence of projectorsegmentsfor cap-
turing. Because the segments are limited by the valid
projector coordinates, they have the property that their
corresponding 3D planes intersect the scanned object from
a single direction only. The capturing process then consists
of taking HDR images for the segment list of each virtual
projector. Each acquired image is thus a full spherical light
�eld view of the intersection of a world space illuminating
plane with the object.

We use the resulting data for geometry and re�ectance
estimation. The geometry is computed by multi-view
triangulation of the laser stripe, Sect.5.4. The re�ectance
is estimated in a re�ectance sharing approach, Sect.5.6.
We generate the re�ectance samples by �rst assembling a
re�ectance �eld from the stripe data, Sect.5.5, and then
sampling it using the estimated object geometry to resolve
occlusion and self-occlusion both for the viewing and
the lighting directions. The result of this approach is an
object geometry with per-surface point BRDF described
as a linear combination of basis BRDFs that have been
estimated from the data as e.g. in [20, 18].

5. Implementation

5.1. Calibration

Geometric Calibration: We perform geometric cal-
ibration by �rst estimating the camera intrinsics using
Bouguet's MATLAB calibration toolbox [1]. We then esti-
mate the camera position and orientation as well as the mir-
ror planes of the three main mirrors by imaging a checker-
board placed at different depths inside the mirror sys-
tem [14]. Next, the laser projector is calibrated for its inter-
nal parameters using the model and procedure of Manakov
et al. [11]. The remaining task is to improve the position and
orientation estimate of the laser projector with respect tothe
mirror system and the camera. For this, we place a checker-
board inside the mirror system and illuminate a set of pro-
jector coordinates, taking an image for every illuminated
point. Since the camera/mirror system is calibrated already,
the checkerboard allows for the computation of the 3D co-
ordinates of the illuminated point. These are usually in dis-
agreement with the prediction produced by the initial cali-
bration of the laser system. We perform an optimization on
the laser intrinsic and extrinsic parameters to improve this
prediction. In a �nal step, we perform a bundle adjustment
on the parameters of all system components. For success-
ful calibration, the whole “atmosphere” of the “planet” pro-
duced by the mirror system should be sampled by checker-
board positions and projected laser points. We typically use
a checkerboard at5 different depths and illuminate on the
order of30projector chambers with5 points each.

The back mirror is calibrated for every scanned object
independently. This is necessary since it must be removed
in order to insert a different object into the system. We
estimate its position after an object is inserted. For this pur-
pose, our mirror has a number of small marks in the corners

Figure 5. Visualization of the camera chambers (left) and pro-
jector chambers (right). Different colors correspond to different
chambers. The plot simultaneously shows the viewpoint and
lighting direction coverage of our system.

which can be triangulated by multi-view triangulation.
Radiometric Calibration: Since our laser source is

only roughly white, we compute an af�ne RGB correction
matrix using a ColorCheckerSG chart positioned inside
the mirror system and illuminated by laser “white light”.
This color transformation is applied to all captured im-
ages. We estimate the attenuation factor of the mirrors
by imaging a Spectralon target, inside the system. To
produce hemispherical illumination for this task, we mount
diffusive paper at the front entrance of the mirror system
and illuminate it with a strong diffuse light source. The
inter-re�ections inside the mirror system distribute the light
over the full hemisphere. Since the mirroring sequence for
every virtual camera is known from the system geometry,
the individual mirrors' attenuation coef�cients can be
estimated from observed products of these factors on
the Spectralon patch as it is visible in different camera
chambers. The three main mirrors were estimated to have
a re�ectance of0:84; 0:86, and0:85, respectively. The rear
mirror has an attenuation coef�cient of0:9. These values
are constant for the different color channels.

5.2. Pre­Processing

Once the system is calibrated, we proceed to compute
the chambers for the virtual cameras and projectors. The
computation is based on the segmentation of a �ood-lit
image of the object positioned inside the mirror system.
Using this image, the visual hull of the object can be
computed [14]. Its geometry is then used to determine the
camera and projector chambers. We perform the actual
computation of the chambers by ray-tracing until the ray
intersects the visual hull, recording the mirror intersections
that occur along the way. Pixels with equal mirror se-
quences belong to a common chamber and are assigned an
ID. This implies that a pixel can only belong to one camera
or projector chamber, respectively. The procedure is the
same for the virtual cameras and the virtual projectors. The
result can be visualized in an image as shown in Fig.5.

5.3. Capture

In preparation of a capture session, we scan-convert the
projector chambers into horizontal scan-lines which we
refer to as segments. Due to the geometry of our galvano-
metric scanning system, this ensures that the scanned laser
sheets correspond to three-dimensional plane segments.
Restriction of the scan-lines to projector chambers guaran-



tees that object points are illuminated only from a single
direction and that the plane segment does not split up re-
gardless of the mirroring sequence traversed until the object
is hit. Each virtual projector is assigned a list of segments.
We capture one HDR imageI m;s (x; y) for each segment
s of all virtual projectorsV m

p . The segments simply
consist of the start and end horizontal projector coordinates
[xstart ; xend ] and one vertical coordinate which allows for
the computation of the corresponding 3D projector plane.
The total number of segments is typically on the order of
20:000, see Table3. Each HDR exposure requires4 images.
We use a sensor resolution of2817� 1876pixels, utilizing
the RGGB Bayer pattern of our camera as one larger pixel.

5.4. Geometry Computation

Our triangulation scheme solves two problems: First,
it allows for triangulation of the object surface fromM
views simultaneously, and second, it integrates the multi-
view measurements into a coherent watertight surface
reconstruction.

Posed more abstractly, our task is to infer an unknown
piece of geometryS � R3 from imagesI m;s that show
the intersection of the geometry by laser sheets. This is
a complex problem, as our unknown is a whole piece of
geometryS, which is characterized by a high-dimensional
parameter space (in our case: a voxelized indicator function
within a cuboid). In addition, we have to account for
noise: Uncertainty in calibration, varying angles between
virtual cameras and lasers, as well as varying distances to
the object (between1:5m � 6m) yield information on the
surface position of strongly varying accuracy, which needs
to be fused appropriately in the overall estimate ofS.

We employ a statistically motivated reconstruction
technique that operates in two steps: First, we compute an
occupancy volume from the images that encodes the like-
lihood and uncertainty of the presence of surfaces in space.
In a second step, we employ the segmentation algorithm
by Unger et al. [17] to compute a globally optimal minimal
surface that separates the interior and exterior of the object.

Occupancy volume:The occupancy volume assigns for
every pointx 2 R3 a likelihood that the measured images
I m;s are compatible with the assumption thatx 2 S. We
denote this function byp(I jx 2 S), which is the marginal
of the likelihoodp(I jS) after projection of the space of all
S onto R3. The variableI stands for the collection of all
segment imagesI m;s . We model the term as product of an
image intensity and a noise term:

p(I jx 2 S) = pint (x) � pnoise (x) (1)

pint (x) accounts for the recorded imageradiance values
and pnoise (x) describes the spatial uncertainty, which is
obtained via classical ray-plane intersections.

For computingpint (x), we projectx to those images
that are potentially covered by the laser line. A correct
point should project to many bright positions for different
combinations of virtual camera and laser position. How-
ever, since the object geometry is unknown at this point,
there is a good chance that the point is occluded in many of

Figure 6. Left: Probability distribution for the Max Planck
dataset. The red line shows the extracted iso-contour.Middle:
The extracted iso-surface.Right: Example of a partial re�ectance
�eld. We show one virtual camera view under ten different
lighting conditions, i.e. for ten different virtual projectors.

these views (typically, about 50%). We model this intuition
by a robust likelihood term

pint (x) =
Y

m;s

Y

V n
c

((1 � � ) p(I m;s ; � n
c (x)) + � ); (2)

that is, pointx is projected into the virtual cameraV n
c

via the projection� n
c . The segment imageI m;s is then

sampled at this location. The intensity is interpreted as a
three-dimensional probability distribution, denoted here by
p(I m;s ; � n

c (x)) . The uniform term,� , models the potential
for occlusion and the chance that the point is an outlier.

The term pnoise is modeling the inaccuracies of the
system calibration. To obtain candidate points for trian-
gulation, we perform a space-time peak detection over
the noise-�ltered segment imagesI m;s for each virtual
projectorV m

p individually, i.e.m is �xed in the following.
For every pixel(x; y) that has a non-negligible space-time
maximum we computet = max s I m;s . The maximum
segment indext identi�es the virtual projector plane
that was used to illuminate the object. In addition, we
determine the virtual cameraV n

c that observed the pixel by
checking if the pixel belongs to its corresponding chamber
n = f i j(x; y) 2 C i

cg. The ray corresponding to pixel(x; y)
is then given by(� n

c ) � 1(x; y). Similarly, the projector
plane is given by(� m

p ) � 1(x; t ); x 2 [xstart ; xend ].
Triangulation results in the mean 3D position of the

surface pointx k . We aim at estimating its uncertainty
with respect to the system calibration. We do so by
determining the region of uncertainty by intersecting
the rays (� n

c ) � 1(x � 2� c; y � 2� c) with the planes
(� m

p ) � 1(x; t � 2� p), where � c is the standard deviation
of the uncertainty in the camera calibration and� p the
corresponding uncertainty in projector plane calibration.
This triangulation results in eight 3D points surrounding a
sheared three-dimensional Gaussian blob

pk
noise (x) =

1

(2� )
3
2

p
j� j

exp�
1
2

(~p� ~� )� � 1(~p� ~� );

(3)
where~p is a 3-vector containing thex- andy-components
of � n

c (x), and they-component of� m
p (x), ~� = ( x; y; t ),

and� = diag(� c; � c; � p). Eq. 3 describes the uncertainty
of an individual triangulated pointx k in three-space.

We obtain the �nal three-dimensional probability
distribution for the surface by summing the negative



log-likelihoods for all individual points

p(I jx 2 S)(x) = �
X

k

log
�
pint (x) � pk

noise (x)
�

: (4)

For computational ef�ciency, we evaluate it only inside the
bounding box provided by the eight 3D points surrounding
the� � region of every triangulated point instead of the full
volume.

Shape priors and segmentation: The evaluation
of Eq. 4 results in a 3D neg-log volume as shown in
Fig. 6 (left). It encodes the evidence onS as extracted from
the images only. In order to obtain a “reasonable shape”,
we have to make assumptionsp(S) on the space of shapes
S has been drawn from. In particular, we have to extract
a closed surface that �lls potential holes occurring, e.g.,
due to self-occlusion of the object. We follow the TV seg-
mentation approach as proposed by Unger et al. [17]. The
segmentation algorithm favors boundaries running along
strong evidence while simultaneously minimizing surface
area. The algorithm is especially convenient because of its
convex energy functional resulting in a globally optimal
solution. An example of an extracted boundary is shown in
Fig. 6 (left, red line), whereas in the middle a complete iso-
surface is shown. The proposed algorithm is robust against
triangulation noise and results in watertight surfaces of
arbitrary topology. The algorithm requires a speci�cationof
regions de�nitely inside and outside the object. We use the
visual hull to de�ne the outside and manually paint a few
coarse strokes into the visualization shown in Fig.6 (left) to
�x the inside region. The result of the algorithm is a binary
indicator function of inside and outside voxels, which we
triangulate using marching cubes and an additional surface
fairing step to remove discretization artifacts.

5.5. Re�ectance Fields

In addition to estimating geometry, we also use the
segment imagesI m;s for the computation of the re�ectance
�eld of the object. Consider the images for a �xed virtual
projectorV m

p : the image
P

s I m;s forms a spherical light
�eld view of the single illumination direction associated
with V m

p . We can assemble one such image for every virtual
projector. Each of these images can be decomposed into its
constituting camera chambers. We thus have assembled a
spherical re�ectance �eldRm;n . The re�ectance �eld im-
ages are radiometrically compensated by removing mirror
attenuation and a quadratic fall-off due to the laser actingas
a point light source. An example of a �xed virtual camera
and a varying virtual projector is shown in Fig.6 (right).

Simply summing the images to obtain the re�ectance
�eld corresponds to taking a long exposure shot while the
laser is scanning a complete projector chamber. We can
avoid summing most of the noise by performing a peak
detection along thes-coordinate of the stackI m;s : For
direct illumination without global illumination effects,
there should occur a single peak for all camera pixels that
see the laser line at some point during the chamber scan
of projectorV m

p . Since the laser has a non-Dirac pro�le,
we use the integral of the measurement values over the

dataset capture pre geometry ref �eld ref share
Angel 93h24m � 3s/seg � 10s/seg � 3s/seg 98min
Emily 104h24m � 3s/seg � 10s/seg � 3s/seg 26min
Max Planck 71h40m � 3s/seg � 10s/seg � 3s/seg 48min

Table 1. Timing for different parts of our pipeline.

neighboring segment positionss as the re�ectance value
after subtracting the noise �oor of the image as determined
by background regions, i.e. image regions that do not
belong to any camera chamber. Using the brightest peak
for this detection often corresponds to choosing the directly
illuminated part of the surface. Under some circumstances,
indirect re�ections can be brighter than the direct illumi-
nation, e.g. for grazing angles. To avoid estimation bias
in these cases, we add a con�dence map to the re�ectance
�eld. If there is a single, well de�ned peak, a pixel has a
high con�dence, if there are several peaks, or the peak is not
well de�ned, we lower the con�dence value. This simple
measure implements a form of direct/global separation [13].

5.6. Re�ectance Sharing

After geometry and re�ectance �eld computation, we
have the means to perform re�ectance sampling. The ge-
ometry is used to determine visibility of a surface point to a
virtual cameraV n

c and a virtual projectorV m
p . If the point

is both visible and lit, the re�ectance sample is given by
Rm;n . Similar to previous work [9, 6], we exclude samples
near depth discontinuities and those at grazing angles.

For re�ectance sharing, we implement the approach of
Weistroffer et al. [18]. As in their paper, we compute a
low-dimensional basis of the SVBRDF directly from the
data by approximating it with a set of radial basis functions.
This is alternated with the estimation of per-surface point
linear weights. The alternating computation of the blending
weights and the basis BRDFs is iterated for a �xed number
of iterations and is applied to each color channel. We
implemented the algorithm in graphics hardware which
enables the reconstruction of large data sets. Whereas
Weistroffer et al. are restricted to� 30:000 re�ectance
samples, we can deal with a three order of magnitude
larger number, see Table3. We still need to sub-sample our
geometry for estimation of the BRDF basis functions. Our
models consist of� 150K surface points with an average
of 120 view/illumination direction pairs, see also Table3,
i.e. we have about20 million re�ectance samples per
object. This is an order of magnitude larger than previous
work [9]. We estimate the basis BRDFs from� 15000
surface points determined by Poisson-disc sampling. We
use individual estimates for the three color channels.

6. Results

We have tested our system on the three objectsAngel,
Emily, andMax Planckshown in Fig.8. Two of the objects,
Emily and Max Planck, are almost single material, metallic
objects, whereas the Angel data set shows a larger number
of different materials.

In Table1 we show the capture and computation times
for the different stages of our pipeline. The capture times
are rather long which is mainly due to the slow scan speed
of our galvanometer and the low output power of our
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Figure 7.Left: Geometric quality of our recovered geometry as
compared to laser scanned geometry (object coated with white
powder). Most of the errors are below6mm , The gap behind the
ear could not be resolved.Right: A comparison of re�ectance
sharing computed and displayed with our approximate geometry
(left) and with laser scanned ground truth geometry (right).
Details appear less blurred in the accurate geometry version.

dataset min max
p

max avg
p

avg

Angel cam 1 28274 168 7718 88
proj 32 35947 190 9299 96

Emily cam 10 20963 145 5744 76
proj 3 29946 173 6536 81

Max Planck cam 1 23732 154 7838 89
proj 19 32283 180 9344 97

Table 2. Number of camera and projector pixels for the virtual
cameras and projectors. This statistic counts object pixels only,
i.e. background is ignored. We give the minimum, the maximum,
and the average numbers. The square roots give the side length of
an equivalent square of pixels.

laser system. Preprocessing, geometry estimation, and re-
�ectance �eld computation are mainly I/O bound. The raw
size of our HDR data sets is between350and400GB. We
therefore report processing times per image disregarding
the I/O part for single threaded computation. The timing for
the geometry computation step includes the computation
of the surface probability volume only. The segmentation
part of the pipeline, implemented with CUDA running on a
Nvidia GTX 580, requires about 3 min for one data set.

The re�ectance sharing step has a signi�cantly lower
memory footprint since it is dealing with the sampled re-
�ectance �eld data, requiring between200and400MB of
memory per data set. The two steps of the re�ectance shar-
ing procedure, see Sect.5.6, have different computational
requirements. First, the computation of the spatial weights
requires the solution of many small linear systems and can
be solved in a parallel fashion. We use a multi-threaded
CPU implementation running on a Xeon 5650, 2.6 GHz
dual-hexacore CPU. Second, the computationally most
demanding part for basis BRDF estimation is the setup of
a large matrix that cannot be determined independently,
requiring several passes over all re�ectance samples. We
implement this part in CUDA, again running on a single
Nvidia GTX 580 GPU.

For the Max Planck data set, a high resolution range
scan is available from the Aim@Shape repository. It was
acquired by coating the object with white powder and range
scanning it with a Minolta vi910 which is at least an order
of magnitude more accurate than our system and can be
considered as ground truth. In order to evaluate our recon-
struction pipeline we registered the geometry recovered by
our technique with the ground truth scan using rigid ICP.
The error distribution is shown in Fig.7. The accuracy of

dataset #cam #proj # segs avg max total
samples

Angel 246 144 20177 223 901 31.9 million
Emily 235 139 18863 133 815 20.8 million
Max Planck 239 134 14483 123 606 17.7 million

Table 3. System properties for the different data sets. #cam and
#proj are the number of virtual cameras and projectors in the sys-
tem, avg samples is the average number of view and lighting direc-
tions per surface point. Max samples reports the surface point with
the maximum number of re�ectance samples. Total samples shows
the overall number of samples used for re�ectance estimation.

dataset #pts basis #pts re� #basis BRDFs #RBFs
Angel 12612 143800 3 � 3 1146
Emily 15532 156232 3 � 1 382
Max Planck 9803 144150 3 � 1 382

Table 4. Re�ectance sharing statistics, “#pts basis” are the
number of surface points used to estimate the basis BRDFs. We
estimate “#basis BRDFs” basis materials for each color channel.
“#RBFs” refers to the generic basis functions used to estimate the
basis BRDFs [18]. “#pts re�” is the number of points in the object
geometry. We estimate individual weights of the basis BRDFs for
each of them.

our system, with an average error of about5 � 6mm, is
low by current standards. However, taking into account the
actual resolution achieved by our virtual multi-view/multi-
projection system, the results can be interpreted as quite
satisfactory, see Table2: Multiplexing onto a 5 MPixel sen-
sor results in a very low number of pixels that are available
for every virtual view and projector. The equivalent square
numbers are provided to give an impression of the image
size of the object in each virtual view. The �ll rate of our
sensor with useful information is between20and25%.

In another experiment, we investigated the impact of
the low resolution geometry as output by our system. We
registered the available ground truth geometry of the Max
Planck data set with our re�ectance �eld. As can be seen in
the images, more detail is preserved with the more accurate
geometry. This effect can be attributed to parallax effects
if the geometry is expected in the wrong position. Thus,
improving the geometry, e.g. by separately scanning it as
in [15] might be a viable option for re�ectance scanning
with a kaleidoscope.

7. Discussion and Conclusions

We have presented a multiplexing system for surround
projection and imaging without moving the acquisition
system or the object. We have demonstrated the principal
feasibility of the approach. In terms of practical applica-
bility it is, however, still not competitive with alternative
approaches.

In the process of developing the system we have encoun-
tered a number of problems that yet limit the practical use
of the system. The most fundamental of these is the limited
resolution of todays imaging and projection systems; a
signi�cant increase in resolution is required for a system
with spatial resolution comparable to the best existing
alternatives. Another limitation of our practical setup isthe
use of a low scan speed laser-galvanometric system. The
low output power of the laser leads to very long acquisition
times and signi�cant amounts of noise in the data. The use
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Figure 8. Results for our data setsAngel(top row),Emily (middle
row), andMax Planck(bottom row). The left two columns show
the distribution of the number of unoccluded re�ectance samples
(view/light pairs) on the object surface. The center right column
shows the objects illuminated from a single direction (Angel and
Emily) and from four directions for the Max Planck data set. In
the right column, we show the objects illuminated by environment
lighting.

of high-end laser cinema projection systems might mitigate
this practical limitation. A fast scan speed could also allow
for using coded structured light instead of laser stripe
scanning, reducing the required scan time once more. An
interesting future research direction is addressing the light
super-position problem computationally: In this paper, we
have opted for sequentializing the acquisition of different
illumination directions. However, using appropriate over-
lapping patterns and a corresponding decoding step could
yield signi�cant speed-ups.

In the short term, the system might be used for a
comparatively inexpensive acquisition of re�ectance �elds
using a standard projector, scanning the geometry by
some other means. In this case, the illumination only
has to �ll complete chambers with �oodlit illumination,
thereby reducing noise issues and dramatically shortening
acquisition times. In the long term, the system can be
seen as a way of generating three-dimensional illumination
distributions which could e.g. be used for spatial coding
or display. Obviously, a trade-off between the directional
and spatial resolution is inherent to our approach, but
designs with a few additional cameras and augmented
mirror con�gurations might provide different compromises
in hardware costs versus attainable resolution.

The main insight of our paper is that kaleidoscopic mul-
tiplexing of omnidirectional acquisition is possible. The
resulting trade-off of spatial versus directional resolution
offers an additional, novel degree of freedom for the design
of acquisition setups.
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